
Journal of Statistical Physics, Vol. 61, Nos. 1/2, 1990 

Theory on Morphological Instability 
in Driven Systems 

Kwan-tai Leung 1 

Received December 19, 1989; final April 2, 1990 

Motivated by recent findings from simulation of a driven lattice gas under shif- 
ted periodic boundary conditions, we study within the context of a continuum 
model the interfacial stability of driven diffusive systems. In this model, an 
external driving field maintains the system away from equilibrium: Well below 
criticality, steady-state solutions of the associated bulk kinetic equation are 
obtained. Our results successfully account for the novel features found in 
simulation. In particular, the solution describing a pair of interfaces tilted with 
respect to the driving field under periodic boundary conditions shows a tilt- 
dependent bulk density (and internal energy), and boundary layers near one of 
the interfaces. Focusing on the interface dynamics, one finds that such an inter- 
face exhibits a characteristic Mullins-Sekerka instability. This is argued to be 
responsible for the onset of the single- to multistrip transformation observed in 
simulation. 

KEY WORDS: Nonequilibrium steady state; interface; instability. 

1. I N T R O D U C T I O N  

The study of nonequi l ib r ium systems has a long history. One  of the 

prototype systems pursued in recent years is a stochastic model of a lattice 
gas of particles driven by an external field E. (1) The effect of E on the hop- 
ping dynamics  is analogous  to that of a uniform electric field acting on 

charged particles. This systems exhibits a bulk phase t ransi t ion akin to the 
phase separat ion in equi l ibr ium binary  systems. Recent studies, (2-41 focused 

on the interfaces, revealed a mul t i tude  of interesting phenomena ,  some of 
which still defy complete theoretical explanation.  Among  them include the 
suppression of interfacial roughening in two dimensions (3) and  the behavior  
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induced by imposing shifted periodic boundary conditions (SPBC) (also 
known as screw boundary conditions). (4~ 

Under SPBC at low temperature, the system phase separates into a 
particle-rich and a particle-poor phase separated by two interfaces which 
are tilted by a certain angle (as determined by the amount of shift) against 
the field. The original motivation of such a study is to establish a connec- 
tion of the suppression of roughness to the nonanalytic property of the 
interracial energy. Unexpected additional results emerged, however, that 
place a much more important role than in equilibrium on the boundary 
conditions in determining even bulk properties. Without the field, the 
system becomes in equilibrium; the influence of the boundary conditions on 
the bulk is totally absent. To summarize, the novel features include the 
following(4): (1) There are two distinct interfaces (see Fig. 4 for an illustra- 
tion), the "leading" edge (away from which particles are driven) appears 
rough, while the "trailing" one (toward which particles are driven) appears 
smooth. (2) The bulk energy has nonanalytic dependence on the shift. (3) 
Boundary layers exist near the trailing edge. (4) At a certain angle of tilt 
(depending on system size), the system undergoes a single- to multistrip 
"splitting" transition, and subsequently a series of "merging" transitions on 
further shifting. In ref. 4, we offered qualitative arguments in favor of these 
observations based on the absorbing and evaporating nature of the trailing 
and leading edge, respectively. However, satisfactory quantitative under- 
standing is still lacking. 

In a different but complementary approach to simulation, a coarse- 
grained continuum model adopted from field theory has provided us with 
insight into some of the unusual bulk (5'6) and interfacial properties ~2) of 
these driven diffusive systems. In this paper, we propose, based on such a 
continuum model, that the above phenomena can be explained within a 
similar framework used in other theoretical analyses of interfacial stability. 
Prominent examples of such analyses are dendritic crystal growth (7) and 
the Saffman-Taylor problem, (8) which involves two-fluid displacement in a 
confined geometry. We will show that a close analogy to these problems of 
pattern formation is not only exhibited in the resemblances of the evolution 
of the objects (clusters) generated, but also in similar mathematical 
structure of the equations. 

Section 2 is devoted to our continuum model and its steady-state 
solutions of tilted planar interfaces under various boundary conditions. 
Section 3 contains a linear stability analysis appropriate to the tilted 
interfaces. In Section 4, comparisons with simulation results are made. 
Finally, a discussion of the physical content of Section 3 and the conclusion 
of this paper are presented in Section 5. 
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2. STEADY STATE SOLUTIONS 

Our starting point of the theoretical description of the interfacial 
instability is a Langevin equation of the bulk density. Such an equation has 
been used in the renormalization group analysis of the critical bulk proper- 
ties, (6) as well as in previous interracial studies. (2) It is based on the kinetic 
equation of the model B, (9) supplemented by a term modeling the driven 
current: Je = a(()) E. After expanding the conductivity a(~b) about ~b = 0 up 
to quadratic term and performing a Galilean transformation to eliminate 
the linear term in ~b, we get (5'6) 

~q~ - -  V -  Jtot 
~t 

1 ), 2 6Jzf  
=5  eaHO 

1 E 2 [ 1 q 
(2.1) 

where W is the usual ~b 4 "Hamittonian": 

1 2 1 g~b4] (2.2) ~ = f  daxI~(V())2 +~ro~ + ~  

Here ~b(x) is the magnetization density, related to the particle density n(x) 
by ~ b = 2 n - 1 ;  2 is the transport coefficient; the symbol ~ll denotes 
derivative with respect to the spatial coordinate parallel to E; and t/ is a 
Gaussian white noise. Although E in general generates spatial anisotropies 
in the parameters coupled to the derivatives, they will be neglected here- 
after in order to simplify our analysis, as they will not change the essential 
qualitative features of the solutions. In what follows we will only consider 
temperature well below To, so that r < 0. In such a regime, the amplitude 
of thermal fluctuations is negligibly small, enabling us to consider just the 
deterministic equation (i.e., the equation without r/). In general, the solu- 
tion of such an equation is still very complicated. Since we are only inter- 
ested in the steady-state solutions, some general properties can be obtained 
from simple analysis. From now on we will focus on two dimensions. 

Since the system phase separates below Tc, we seek a steady-state 
solution with planar interface(s) separating the two bulk phases. Let 0 
be the orientation of the interface(s) relative to E, which points along 
the + y  direction. The above equation can be cast into a simpler 
form by defining dimensionless variables: ~(U,V,~)=qk(x,y,t)/q~eq , 
U = ( --X COS 0 + y sin O)/a, v = (x sin 0 + y cos O)/a, and ~: = a-42t are the 
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respective dimensionless density function, dimensionless distances 
measured from and along the interface, and the dimensionless time. The 
scales are set by the usual model-B equilibrium magnetization and inter- 
facial width: ~b2q=-6r/g, a = l / ( - r )  1/2. With this rescaling, the only 
parameter left is 

= 1Eq~eqa3 sin 0 (2.3) 

By translational invariance along the interfaces, the steady-state solution 
depends only on u. It satisfies 

e~2-- tfi'-- ~ "  + 3t~20' = J (2.4) 

where the integration constant J contributes negatively to the current nor- 
mal to the interfaces. Now we discuss some general features of the steady- 
state solution. Without loss of generality, we consider e > 0. 

Reduction of Order. Consider solutions which satisfy ~9(u = 0 ) =  0; i.e., 
having the line u = 0 as the center of one of the interfaces. Integrating (2.4) 
once, we obtain a second-order integral-differential equation: 

+ 0 "  - ~,3 = f [ d ,  Ce,/, 2 _ j )  (2.5) 

Multiplying by ~0' and integrating by part reduces (2.5) to a first-order 
equation: 

�89 + �89 �88 = �89162 + du'EO(u)-g,(u')]E~O(u')2-J] (2.6) 

Now consider solutions to (2.4) corresponding to phase-separated states in 
a system of linear dimension L. 

Single Interface for L=  o0. For an infinite system, the solutions 
describing a single planar interface, separating two bulk phases at uniform 
bulk density ~p(_+oo)= + _ ~ ,  satisfy J = ~ .  We assume that tp(u) is 
monotonic, since there is no physical reason or numerical evidence for 
to be otherwise. It follows from (2.5) that 0 2 < 1 or > 1 for ~ < 0  or >0,  
respectively. This asymmetry, as induced by E, is important to the stability 
analysis in the next section. Notice that O(u) becomes a simple tanh with 
O~ = 1 for e =0 .  

For  L = ~ ,  the tanh is also a solution for ~ r 0: 

~,(u) = ~h~ tanh(u/~) (2.7a) 
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with 

f l  + x/-2 e -  r  , ~(oo) > 0  (2.7b) 
OL = 0,, 

Y-2 -- -l'b2 J = / 3 0  2 a n d  for "trailing" or "leading" interface, respectively; ~ - 2  ~- . . . .  
r  Although it is not necessarily the only solution in the 
whole functional space, the tanh is obviously important at least for small 
e: one naturally arrives at these solutions in a perturbation expansion in 
small e. 

PBC Solution for Finite L. Periodic boundary condition (PBC) is 
physically relevant to either real systems or computer simulations. It is 
probably the only boundary condition conceivable to give rise to nonzero 
current along E. It is also of mathematical interest as to what solution the 
system would pick in the presence of an asymmetry of the two interfaces, 
for now we must have two coexisting, parallel interfaces in the system. Let 
us look for solutions such that r  for O<u<L/2,  and r  for 
L/2 < u < L. 

Due to nonlinearities, we resort to numerical methods (I~ in finding 
the solutions. Solutions were obtained for both weak and strong field 
strength, e = 0.2, 0.4, and 0.6, starting from small to large period L, until a 
plateau in the bulk density CB was observed. Some typical solutions are 
presented in Fig. 1. We observed some important features: 

(a) There exists a hump near the trailing interface, which has a peak 
value lying between the bulk densities Ct and 0,  of the tanh 
profiles. The same is true for the slope 0'(0). 

(b) The extent of the hump is independent of L for large enough L. 
It is therefore a boundary layer associated with the trailing 
interface. 

(c) There is oscillation in the tail of the hump for sufficiently 
large e. 

(d) No bounded solution was found for J <  e0~. Solutions exist only 
for J >  er L increases with decreasing J - e r  ~. 

(e) At the leading interface, the profile approaches the tanh solution 
(2.7) in the limit of L ~  oo, as J---r e0~ from above. 

Additional insight can be obtained from (2.4) and (2.5). First, away 
from the interfaces, a linearization of (2.4) predicts an exponential decay of 
0(u) to a constant r  in the form of e ~" with 2 determined by 

23 + (1 -- 302) 2 -- 2e0B = 0 (2.8) 
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Fig. 1. Plots of some typical numerical solutions of (2.4). (a) ~=0.2, ~2=0.1434, 
J=0.1436, L/2=27; (b) ~=0.4, coy=0.1737, J=0.1738, L/2=22.7; (c) e=0.4, J=0.1739, 
L/2= 15.8; (d) e=0.4, J=0.1746, L/2= 10.7; (e) e=0.6, mp2=0.0909, J=0.091, L/2=24.8. 
Notice the boundary layers near the trailing interface. Driving field E points to the right. 

This equation has one positive real root (21), and two others ( 2 2 , ) ' 3 )  with 
negative real parts. Substituting Ot for OB, we find 2 2 = 2 ;  ~ for 
e > e c =  1/3 w/2, and 22 and 23 are real otherwise. 21 accounts for the 
exponential deviation from 08 at the leading interface; whereas 22 and 23 
account for the decay away from the hump, with oscillation for e > ec- For 
e < l ,  one of the negative roots goes as - e ,  yielding a long tail. This 
exponential decay away from the trailing interface is consistent with the 
hump being L independent. For the values of e used in the numerical solu- 
tions, we find, denoting 22 = 2R + i2~ in the case of complex roots: (a) 

= 0.2:22 = -0.3236, 23 = -0.8740; (b) ~ = 0.4: 2R = -0.4660, 21= 0.5904; 
(c) e = 0.6: 2R = -0.2752, 21 = 0.8791. These agree with the estimates from 
Fig. 1. Judging from the distortion of the profile compared to e = 0, e = 0.6 
is regarded as a strong field. 

Furthermore, we may argue on the basis of (2.4) that the boundary 
layer appears only near the trailing edge. To see this, we recall that the 
total current along E is given by Jtot = Jo  - J ,  with Jo = ~(~b = 0) E the con- 
stant term eliminated upon taking the derivative in (2.1). At the tail of the 
hump, we may make the approximation J ~  eO2+ (3#/2-  1) ~ '  (see Fig. 2), 
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where the second term is identified as the diffusive current. For  the sake of 
argument,  let us assume that  e is small (more precisely, e < 2ec), so that we 
take 3r  2 -  1 > 0 .  In the steady state, the current must  be uniform at 
Jtm = J o -  gr i.e., the value deep in the bulk. It is clear, then, that  if the 
hump sits near the leading edge, both  terms in J would contribute to a 
reduct ion from those at r  implying that a boundary  layer near the 
leading edge is inconsistent with the steady-state condit ion of a uniform Ytot 
everywhere. In contrast,  it is consistent to have a boundary  layer near the 
trailing edge. 

Next, assuming the existence of  a boundary  layer near the trailing 
interface, we can derive some inequalities on r  We arbitrarily pick a 
point  u~ in the bulk, i.e., r  = CB, as the upper  integration limit in (2.5): 

fO uB CB(1 - r B)=e duEr162 (2.9) 

Since we assume that  the hump is situated near u = O ,  [L/2 du[r _r 
J UB 

is negative. Subtract ing (2.9) from SU2du[O(u)2-r then yields 
1 -  r  > 0. We therefore arrive at the following: 

0<r162 1 < 6 ,  (2.10) 
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Fig. 2. Plots of r and its derivatives for the case of Fig. lb, showing the region of validity 
of (3.1), in which r may be neglected compared to r  away from the hump and the leading 
interface. 
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It is a numerical finding that the only possible value of t)8 is ~l. The 
question remains open as to why, physically, the leading edge value of 
infinite-L solution is selected under PBC. Note that Jtot(~tt)<Jtot(~l), 
implying that the steady state favors a larger current. Whether this has any 
connection with the principle of maximum entropy production deserves 
further investigation. In connection with simulation, since the bulk density 
equals the trailing edge value Or, it is easy to see from (2.7b) and (2.3) that 
the bulk density, hence the bulk energy, acquires nonanalytic dependence 
of the angle of tilt in the form of [0[ as 0 ~ 0, consistent with our previous 
finding. (4) 

Before closing this section, a few remarks are in order: 

1. Given the PBC solution, suppose we take the limit L ~ oo. We 
would then end up with a solution of one trailing interface with humps on 
both sides, while O(u ~ + o o ) ~  _+~.  Now we regard J in (2.4) as a func- 
tion of L and e. We take the limit L ~  oo first, and we try to find the 
humps perturbatively by expanding everything about e = 0. This instead 
yields the tanh solution for L = oo mentioned above. This means that under 
PBC the two limits limL~ ~ and l i m ~  o approach the e = 0, L = ov solu- 
tion along different trajectories. Therefore e represents a singular perturba- 
tion to the e = 0 solutions. 

2. We have been assuming so far that the conductivity a(~b) is a 
quadratic function of ql, but all features of the above results are more 
general than this implies. For the results to remain valid, it is sufficient for 
a(~b) to be continuous and monotonically decreasing on both sides of ~b = 0. 

3. The existence of boundary layers near the trailing edge has been 
confirmed in Monte Carlo simulation of the SPBC system, in the single- 
strip phase. This strenthens our belief that the Langevin equation, despite 
its crudeness, captures some essence of the physics behind the lattice 
models. 

4. In a phase space analysis of (2.4), we write a three-dimensional 
vector y(u) = (~, ~',  0")  and visualize the solutions as trajectories in phase 
space. For any given J > 0 ,  there are two fixed points a t  (-}-(J/e) 1/2, O, 0). 
Linearizing about these fixed points, we find that the eigenvalues are 
precisely those given by (2.8). Thus, for example, they are spirals for e > <.  
We see from Fig. 3 that the possibilities are much richer than those of e = 0, 
The linear stabilities of the fixed points for any J > 0 are the same. The fact 
that only J <  eO2 gives bounded PBC solutions is apparently due to non- 
linear effects, which unfortunately cannot be explained by the behavior in 
the vicinity of the fixed points. A rigorous proof of the significance of the 
special value eO ~ goes beyond the scope of this paper. 
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Fig. 3. Projection of the phase-space trajectories of the numerical solutions of Figs. lb, ld, 
and le onto the (0, ~,') subspace. In cases (b) and (e), the fixed points appear as spirals. 

To summarize, the first three features of previous SPBC simulation as 
mentioned in Section 1 are predicted by the analysis of the continuum 
model. Now we will focus on the fourth. 

3. S T A B I L I T Y  A N A L Y S I S  

Based on the steady-state solutions we found above, the single- to 
multistrip transformation observed in the SPBC system can be understood 
in the same framework in which the crystal growth from melts (v) or the 
hydrodynamic instability of the Saffman-Taylor  problem (8) is discussed. 
Phenomenologically, an initially stable system undergoes an instability as 
some control parameter  is changed. Eventually the system transforms into 
some new configuration which is globally more stable than the initial one. 
In each of the above examples, the initial instability is associated with 
the interfaces, which was first studied systematically by Mullins and 
Sekerka. (11) Such interfaces separate in general the two bulk phases of a 
binary system. 

To illustrate the analogy claimed above, we will derive in this section 
the initial interfacial instability of the SPBC system based on our con- 
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tinuum model of the last section. Consider a particle strip of width L/2, 
tilted at an angle 0 with respect to the field E, which points in the + y 
direction. Because of the tilting (which is interpreted as a result of imposing 
SPBC), there wilt be a trailing interface and a leading interface. As shown 
in the last section, boundary layers are associated only with the trailing 
one, as a result of spatial anisotropy induced by E. Since the two interfaces 
are far apart, we shall consider each separately. 

At low temperature, we are allowed to treate the interface as a contour 
of negligible thickness 4, for ~ is much smaller than any other lengths of 
concern. Under this low-temperature approximation, the bulk equation is 
reduced to a pair of equations, one for each side of the interface. The inter- 
face itself plays the role of a moving boundary at which the bulk solutions 
have to match. Away from the interfacial region (of thickness 4), the bulk 
satisfies diffusion equations supplemented by the driven current: 

00 _ DV2~ + ,~/;. ~ u ~  + '~E~r ~ (3.1) 
0t 

where c~ labels the two bulk phases: ~b~ = -+q~B, the constant bulk densities 
deep in the two phases. E• = E sin 0 and Ell --- E cos 0 are the components 
perpendicular and parallel to the planar interface. Notice that the diffusion 
constant D is the same in both phases, due to Ising symmetry. The differen- 
ces between (3.1) and (2.1) involve higher-order terms in derivatives and in 
~b. They account for the details of the profile of the interfaces of thickness 
4. Such details are irrelevant to our consideration of the interfacial 
instability. 

We first consider the trailing interface. Thus, ~b(u--._+oe)= 
_+~be, ~b(u--, 0 + ) =  +~b~, where the value at the interface q~,-~ ~boqOt, greater 
than the value ~bB deep in the bulk, is due to the presence of boundary 
layers. The bulk equations can readily be solved for the steady state ~bE(u) 
of a planar interface that lies on the v axis: 

~be(u) = ~b~ + (~b,- ~bs) e - juW•̀ (3.2) 

The ramps created by the boundary layers decay into the bulk over 
l •  = (2D-IEz~bB) -1. On the contrary, with the absence of a boundary 
layer, the solution for the leading interface is just a kink with uniform den- 
sities ___~b B. Therefore, the combined steady-state solution to (3.1) is 
precisely the PBC solution of (2.4), with the interracial regions shrinking to 
zero under the low-temperature approximation. 

The steady state is characterized by nonzero current. The total current 
is 

, ] to t  -DV~bE(u)- E~b~[~be(u)- ~b~] + Ao (3.3) 
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Deep in the bulk, as ~bE--* _+~bB, the total current becomes uniform at the 
value j o _  Ea(~bB). The component of ,jtot perpendicular to the interface, 
however, is uniform everywhere: 

J•176 - - D a ,  ~bE ( u ) - -  _ E• ~b~ [~bE (u) -- ~b~] + J~ sin 0 

= jo  sin 0 
(3.4) 

The last equality is a direct consequence of (3.1). 
To exhibit interfacial instability, we consider for the planar trailing 

interface the response to small perturbation: 

~(V) = ~1 eikv- io)t (3.5) 

Thus, u = ~(v) locates the undulated interface. The sign of -ico will then 
determine the stability. The physical origin of such perturbation is thermal 
fluctuation, which, though rare at low temperature, is capable of spon- 
taneously generating ~(v) in a short time scale compared to the response 
time of the interface. The undulation inevitably modifies the nearby bulk 
environment: 

~fbB+(fbi_fbB) e- , / t .  +ddleik~ i~o, pu, u>~ 
fb(u) [_(gB_(fb  _fbs) eU/,• u<~ 

u/l. + : l e  
~ ~__(9 _((91_(gB) U/l• +~b,leik~ io~t+p'u, U<~ 

(3.6) 

The small amplitudes ~bl and ~b~ are of 
and Re p' > 0. 

Because of local conservation, it 
change the geometry of the interface. 
face adjusts itself very rapidly to the 
there are most mobile. Such a change 
relation, (12~ which serves as a moving 

the same order as ~1. Here Re p > 0 

normally takes a very long time to 
In contrast, the density at the inter- 
local environment, for the particles 
is described by the Gibbs-Thomson 
boundary condition: 

~b(interface) -T- ~b~ = Adp:do~c (3.7) 

where A~b~ = 2 q ~ i ,  do is the capillary length proportional to the surface ten- 
sion, and ~: = -(~/6~) S dv[1 + (c9~)2] 1/2 is the local curvature. Notice that 
the term on the right accounts solely for the effect of the surface tension 
minimizing the surface area, while the effect of the field is implicitly 
contained in the constants T-~b:. Although this is an assumption without 
rigorous justification, it is a plausible and a natural extension of the corre- 
sponding equilibrium condition. 
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Fig. 4. A planar trailing interface is displaced locally to the right by ~1. This induces ~b~ and 
~b'~, which in turn create an excess current J - J ' ,  forcing the interface to advance further. For 
simplicity, the case of zero curvature is depicted here. 

The undula t ion creates imbalance  of the currents, which results in the 
mot ion  of the interface: 

r } . [ J ' ~ 1 7 6  ) ] _ A r  0f [ 1 + ( 0 o ~ ) 2 ]  -1/2 
Ot 

(3:8) 

where the normal  is r~ = (fi - ~ v ~ ) [ 1  + ( ~ ) 2 ] - 1 / 2 .  The excess of the 
t r a n s v e r s e  currents is neglected in (3.8), because only the immediate  
ne ighborhood  of the interface is considered. Away from the interface, excess 
current  is responsible for b u l k  excitations, which are not  of concern to the 
interface. A schematic il lustration of (3.5)-(3.8) is depicted in Fig. 2. 

Equat ions  (3.1), (3.7), and (3.8) const i tute a mathemat ica l ly  complete  
description of the evolut ion of the interface. In a linear stability analysis, 
we need only keep terms up to O(~t), O(~bl), and O(~b]). By substituting 
(3.6) into (3.1), the extent of the bulk undulat ion,  p and p ' ,  is determined: 

p 2  _ k 2 _ p l ~  1 + ikl l  T 1 _ 05 = 0 
(3.9) 

p , 2  _ k 2 _ p ' l  • 1 _ i k l s  1 _ 05 = 0 

where ll~ -1 -= 2 D -  1Ell ~b8 and 05 - - i o ~ / D .  Using • = 3 ~  + O(~2), (3.6) and 
(3.7) give 

~1 = ~tl = [ - A~ ido  k2 ~- ( 0 1 -  OB) 12 I"] ~1 (3 .10 )  

Both effects of relaxat ion by the surface tension and that  of amplification 
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by the ramps are apparent in (3.10). Given these adjustments to the bulk, 
the interface moves in accord to (3.8): 

~ 1/2 
~ .  [ ( o v ~  + ) o E ~ E ) ~ -  -- (DV~E + , ~ E ~ ) ~ +  ] = ~ ,  ~S [ 1 + ( a ~ )  ~] 

( 3 . 1 1 )  

Using (3.6), we found for the linear terms 

O~(p+ p')+ 2l[~(Oz-(J~) #~l• ~ -2ls  = -icoAOiD 1~1 (3.12) 

After eliminating ~b~ and ~b'~ by (3.10), we get 

( 5 = ( p + p ' ) ( ~ l i l - d o k 2 ) + 2 d o k 2 l v  ~ (3.13a) 

Here we denote ~bz-~b B by 6~b, which is of order e for small e. By (3.9) 

O~ 
p+p'=12~+12~[(l+4k2l~+4cSlZ)Z+(4kl~liT1)2]~/4cos-~ (3.13b) 

with c~, in the range from 0 to re/2, defined by 

4kl ~( 1 
tan a = (3.13c) I• + 4(k2 + (5) 

In (3.13a), the physical content of the term proportional to do k2 is pure 
relaxation, whereas that of those proportional to 12_ ~ is more subtle: their 
presence implies that the density profile associated with the initial planar 
interface is still influencing the interface at later times. This memory effect 
originates from the gradient of the bulk density (from ~b s to ~bs) over a 
distance l• much greater than {1. 

Now it is straightforward to solve for the relaxation or amplification 
rate (5 from (3.13). First, in the limit k ~ 0, we find 

e S ( 0 ) = 2 ~ l S _  2 1 + 2 ~  > 0  (3.14) 

which clearly displays the instability. Expanding about k = 0, we find to 
leading order 

p + p'= 2/2'[1 +12~5(k)+k: l~  + (kl~ l~l) 2 + ...] 

Hence, 
2 2 c5(k)=2 122El+12(S(k)+k l• ~)2+ ...3 
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which yields 

a S ( k )  - o 5 ( 0 )  

~(0 )  
~ k ~ t ~ [ 1  + (t.t~?~) ~] + . . .  

= k  l• + ... (3.15) 

This is valid for 0 r 0 and small 6~/Aq~i. At large k 2, (~(k) ~ -2do k3 + ..., 
so that oS(k) has one zero at some finite k, denoted by k~. The interface is 
therefore unstable against small undulation of wavelength longer than k, 1. 
Using (3.13), k~ is then determined implicitly by 

l , d  o l+[l+16(kcl,)4+8(kfl• 

• C d o l  - ( k J ~ )  ~ + 2 ( k 3 •  ~ 

= 0  (3.16) 

with k=kc and c5=0 in the definition of e in (3.13c). For any given 
(60/AO~) l, do I, kc can be determined numerically as a function of the 
angle of tilt 0. Since D ~ -2r ~)tdo 2, (~/A~I~ ~ for small e, and of order 
unity for large e, we deduce roughly that l , l~do~e  and hence 
(6(~/AO~)lidol~O(1) for small e and of order 1/e for large e. Figure 5 
gives plots of some typical numerical results. This and the result of ~5(0) 
show that the instability diminishes as E--+ 0 or 0 -~ 0. This is in agreement 
with simulation for the well-established stability of an interface parallel to 
the field (i.e, 0 = 0). 

4. C O M P A R I S O N  W I T H  S I M U L A T I O N  

In connection with simulation, the results here suggest that the single- 
to multistrip transition is of kinetic nature, rather than of thermodynamic 
nature like a first-order transition as originally conceived. This assertion is 
supported by the absence of hysterisis even at such a low temperature as 
0.8To (E=  0). (4) Furthermore, between the initial single- and the final mul- 
tistrip configuration, the system is characterized by fingers of definite width 
with steady speed of growth (see Fig. 6). The multistrip configuration 
emerges when fingers grow to wrap around the system. This fingering is 
similar to those in crystal growth and in the Saffman-Taylor problem. It 
is of considerable interest to investigate further the kinetics of fingering and 
to characterize this intermediate "steady state" by the finger parameters. 
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In order  to relate to s imulat ion more  quantitat ively,  we reinterpret  our  
da ta  f rom SPBC runs as follows. Fo r  small shift h, the length LIF a long the 
interface in the single-strip phase plays the role of the m a x i m u m  
wavelength k - ~  above:  

LII - (L ~ + h2) u2 

Accordingly,  for a given O=sin-t(h/LiI) ,  the single strip will become 
unstable when LID exceeds a critical length Lc(O)=_2~ko(O) -1. Since the 
interstep distance d~tep is Ly/h=cotO,  this implies, for a given Lit, an 
instability for sufficiently large number  of steps h or  small d~tev. Therefore,  
for a given 0, there is a unique L~ below which the system is in a single- 
strip phase,  and above  which in a mult istr ip phase. Using the da ta  of ref. 4 
and new runs for systems (L x x Ly) 24 x 24, 60 x 60, and 60 x 312, 2 which 
go mult is t r ip  at h = h e =  5, 8, and 23, respectively, we plot  Lc(O) -~ versus 
sin 0 in Fig. 7. The curving toward  the origin, set in by the L y =  312 data  
point,  is consistent quali tat ively with our  stability analysis (Fig. 5); in 
part icular,  the d isappearance  of single-strip phase for any finite 0 in the 
t he rmodynamic  limit is suggested. Unfor tunate ly ,  as seen f rom the vertical 

2 Test runs on a 24 x 100 system show that h~ is insensitive to the lateral size L~. 

0 . 0 6  
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Fig. 5. Numerical results fom (3.16) of the critical wavenumber k~(O)l• sin O~k~d2/ECB 
versus the angle of tilt, for the dimensionless parameter (6r 1= 0.01 on the right, 
and 1 on the left. 
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Fig. 6. A snapshot of an SPBC 100 x 100 configuration from simulation, during its evolution 
from a single strip (originally tilted to the left) to multistrips. The vertical boundaries are 
joined by PBC, whereas the horizontal ones are relatively shifted by h c = 12 before joining. 
The particle and the hole finger grow steadily until they wrap around the system to form a 
multistrip configuration. Though the leading edge is very noisy, it remains stable throughout. 

scale of Fig. 7, to explore this asymptotic behavior demands enormous 
computational effort. 

Although the stability analysis suggests a mechanism for the initial 
growth of fingers, there are important differences between the continuum 
and the lattice model. In ref. 4, we emphasized the subtle interplay among 
the field E, boundary conditions, and the lattice. Here in the continuum 
model, lattice anisotropy is neglected. Ultimately, a complete theory must 
also account for the lattice which governs the selection process, as seen in 
the direction of fingering and the subsequent orientation of the multistrip. 
Also, screening is very pronounced; eventually only one finger is seen to 
grow along a narrow channel of width h. 

In simulations, the multistrip phase is also unstable with increasing 
tilt. It undergoes a series of n-strip to (n-1)-s t r ip  merging transitions, 
where at  the transition the interface in the (n - 1)-strip phase is always less 
inclined with respect to E than in the n-strip phase (see ref. 4 for more 
details). It is tempting to invoke the above splitting mechanism of a single 
strip in explaining this. Although this may be correct qualitatively, we cau- 
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Simulation results of SPBC runs (from right to left): Ly = 20, 24, 36, 48, 60, 100, and 
312. Stability analysis predicts the curve to bend toward the origin (cf. Fig. 5). 

tion against it, because in the multistrip phase, the spacing between inter- 
faces is fairly small in all the cases we studied. This is true even for systems 
of large L, as the strip width Ws '~ L / n  ~ LOc is consistently small, since the 
angle of tilt at transition 0c decreases with increasing L. From the numeri- 
cal solutions, we knew that for small period the hump appears to be a 
gradient across the whole strip [see cases (c) and (d) in Fig. 1]. Therefore, 
in the multistrip phase, neighboring strips are strongly interacting. This is 
where the above theory breaks down. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N  

First, we remark on the role of thermal fluctuations that is responsible 
for the undulation. Since our analysis is based on a low-temperature 
approximation, such fluctuations are small in amplitude and rare in 
occurrence. The rarity of such events, however, does not imply that they 
are slow. In fact, as observed in simulation, disturbance of a planar inter- 
face usually occurs in a short time compared to its subsequent relaxation 
or amplification. Yet, in contrast, they play a negligible role in relaxing or 
amplifying the disturbance, for otherwise they have to act either in the 
same or the opposite direction in phase space as of the creation, which is 
extremely unlikely. This is the justification of dropping the noise term in 
(2.1) and putting in the undulation by hand in (3.5) and (3.6). 
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Second, we notice important differences between an interface in steady 
state and one in equilibrium. The first deals with the Gibbs-Thomson rela- 
tion (3.7) that fixes the values of the bulk density at both sides of the inter- 
face after small disturbance. For simplicity, consider zero surface tension. 
In equilibrium, the values are determined by the coexistence curve at the 
given temperature, i.e., ~b(interface)= -l-~beq(T ). This ability of local adjust- 
ment by the system to the global average density stems from the existence 
of a free energy. To minimize the free energy, the system tries to pick ~beq 
as the density everywhere, except, of course, right at the interface. On the 
contrary, a system in steady state does not have a free energy as a guide. 
Although the density deep in the bulk is similarly determined by the 
coexistence curve, that at the interface is rather fixed by maintaining a 
uniform current, a requirement with no equilibrium counterpart. 3 Since this 
does not operate locally, it would not be easy to argue that ~b(interface) 
instantaneously adjusts itself to ~bi during its course of evolution. Being 
aware of this potential pitfall of (3.7), we remark that in order to realize the 
Mullins-Sekerka instability, the exact value of ~b(interface) is not crucial. 
First, it is reasonable to assume, at least for small distortion ~1, that 
~b(~-) = -~b(~ § ), since this is just Ising symmetry obeyed by the local den- 
sity function in the Langevin equation. Then it is easy to convince oneself, 
say, graphically (cf. Fig. 2), that within a reasonable range of value chosen 
for ~b(interface), the excess of current so created still yields an unstable 
planar interface. 

At a less conceptual but more technical level, we address the 
possibility of new kinetic terms introduced by the field. It is appreciated (7/ 
on physical grounds that a moving interface should induce, in the density 
across the interface, a discontinuity in the form of an (anisotropic) term 
proportional to the growth velocity on the right-hand side of (3.7), thereby 
pulling the system away from local equilibrium. Within the linear stability 
analysis, such a term is expected to be negligibly small, and has been 
neglected above as well as in other studies. (12'14'~s~ However, it may be 
important in the nonlinear regime where the planar interface is substan- 
tially distorted. 

The most essential feature of this study is the existence of boundary 
layers. Without the ramps created by such layers, the length l• would be 
infinite, and the interface would always be stable. This is precisely the case 
in the equilibrium system, (1z'13) in the case of parallel interface (to E), or 
in a previous study where only antiperiodic configurations were con- 
sidered (2) (which picks out only tanh-like profiles as discussed in Section 2). 

3 Thus, we have to solve for the steady state from the kinetic equation (Section 2), as opposed 
to locating the minimum of some functional like ~{~b} in equilibrium. 
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Our interest in considering the pair of interfaces under PBC, besides one 
under anti-PBC, is motivated by the first realization of driven tilted inter- 
faces and the subsequent transition from single- to multistrip configuration. 
The current work, on the one hand, provides a plausible framework for 
understanding the mechanism of the onset of such a transition. On the 
other hand, this represents a simple example of steady-state interracial 
instability which is accessible not only to simulation, but also to experi- 
ment. It is analogous to the symmetric model introduced by Langer and 
Turski, ~ where their asymptotic density gradient (due to undercooling 
which is absent here) plays the role of our field. A similar situation is also 
encountered in interfacial growth in the presence of a perpendicular 
field. (14) The ramps also dictate the instability that results from quenching 
deeper into the ordered phase in nondriven systems, (15) though their physi- 
cal origin is again different. 
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